# **ANALYSIS OF HELICAL GEAR TEETH IN**

## **POWER FLOATER CUM TROWEL**

## MACHINE

## Guided By:

## Mr. Dixit.M.PATEL

Submitted By: JOSHI MITESHKUMAR N. (090780119009) MODI DHARAK M. (090780119045) PATEL RAVIKUMAR C. (090780119065)



#### POWER FLOATER CUM TROWEL MACHINE



## **Torque Calculation**

- Input power and speed to the shaft P=2.20kw NA=1400rpm
- Torque for input gear Now, P=2∏NATA/60000 2.20 =2 ∏\*1400\*TA/60000 TA = 15.006 N.m

speed for intermediate gear TA/TB = NB/NA 16/62 = NB/1400 NB = 361.29 rpm

```
Now, Torque for intermediate gear
P=2 ∏NBTB/60000
2.2=2* ∏*361.29*TB/60000
TB=58.15N.m
```

```
speed for output gear
TC/TD=ND/NB
16/50=ND/361.29
ND=115.61 rpm
```

## Torque for output gear P=2 ∏NDTD/60000 2.2=2\* ∏\*115.61\*TD/60000 **TD=181.71 N.m**

## Part's geometry

#### Parameter definition:

| <b>Component Name</b> | Feature Name | <b>Parameter Name</b> | Values | <b>Current Value</b> | Unit |
|-----------------------|--------------|-----------------------|--------|----------------------|------|
| Spur Gear1            | Spur Gear    | da_b                  | 24,25  | 24                   | mm   |

### Material(s)

| Name           | en353                     |                |  |  |  |
|----------------|---------------------------|----------------|--|--|--|
|                | Mass Density              | 7.85 g/cm^3    |  |  |  |
| General        | Yield Strength            | 207 MPa        |  |  |  |
|                | Ultimate Tensile Strength | 345 MPa        |  |  |  |
| Stress         | Young's Modulus           | 210 GPa        |  |  |  |
|                | Poisson's Ratio           | 0.3 ul         |  |  |  |
|                | Shear Modulus             | 80.7692 GPa    |  |  |  |
|                | Expansion Coefficient     | 0.000012 ul/c  |  |  |  |
| Stress Thermal | Thermal Conductivity      | 56 W/( m K )   |  |  |  |
|                | Specific Heat             | 460 J/( kg c ) |  |  |  |
| Part Name(s)   | Spur Gear1                |                |  |  |  |

## Part's geometry

### □ Selected Face(s)



### Results

### Parametric Configuration:1

### □ Parameter(s)

| <b>Component Name</b> | Feature Name | <b>Parameter Name</b> | <b>Current Value</b> | Unit |
|-----------------------|--------------|-----------------------|----------------------|------|
| Spur Gear1            | Spur Gear    | da_b                  | 24                   | mm   |

### Reaction Force and Moment on Constraints

| Constraint Name    | Reaction Force |                   | Reaction Moment |                   |  |
|--------------------|----------------|-------------------|-----------------|-------------------|--|
|                    | Magnitude      | Component (X,Y,Z) | Magnitude       | Component (X,Y,Z) |  |
| Fixed Constraint:1 | 0 N            | 0 N               |                 | 0 N m             |  |
|                    |                | 0 N               | 15.8386 N m     | 0 N m             |  |
|                    |                | 0 N               |                 | 15.8386 N m       |  |

### Result Summary

| Name             | Minimum        | Maximum    |  |  |
|------------------|----------------|------------|--|--|
| Volume           | 58965.1 mm^3   |            |  |  |
| Mass             | 0.462876 kg    |            |  |  |
| Von Mises Stress | 0.00554398 MPa | 49.462 MPa |  |  |
| Safety Factor    | 4.18503 ul     | 15 ul      |  |  |



## **Dimension tuned**

### □ Parameter(s)

| <b>Component Name</b> | Feature Name | Parameter Name | Current Value | Unit |
|-----------------------|--------------|----------------|---------------|------|
| Spur Gear1            | Spur Gear    | da_b           | 25            | mm   |

#### Reaction Force and Moment on Constraints

| Constraint Name    | Reaction Force |                   | Reaction Moment |                   |  |
|--------------------|----------------|-------------------|-----------------|-------------------|--|
|                    | Magnitude      | Component (X,Y,Z) | Magnitude       | Component (X,Y,Z) |  |
| Fixed Constraint:1 | 0 N            | 0 N               |                 | 0 N m             |  |
|                    |                | 0 N               | 15.8992 N m     | 0 N m             |  |
|                    |                | 0 N               |                 | 15.8992 N m       |  |

### Result Summary

| Name             | Minimum Maximu |            |  |
|------------------|----------------|------------|--|
| Volume           | 59417.1 mm^3   |            |  |
| Mass             | 0.466424 kg    |            |  |
| Von Mises Stress | 0.0068128 MPa  | 46.632 MPa |  |
| Safety Factor    | 4.43901 ul     | 15 ul      |  |



### Parameter definition:

| Component Name | Feature Name | Parameter Name | Values                       | Current Value | Unit |
|----------------|--------------|----------------|------------------------------|---------------|------|
| Spur Gear1     | Spur Gear    | da_b           | 19,24,24.1,24.2,24.5,25,25.5 | 24            | mm   |

| Dimension (mm) | Von mises stress (Mpa) |
|----------------|------------------------|
| 24.0           | 49.4620                |
| 19.0           | 51.4396                |
| 24.1           | 58.3871                |
| 24.2           | 64.7244                |
| 24.5           | 51.4613                |
| 25.0           | 46.5612                |
| 25.5           | 48.6279                |



#### **Dimension Vs Von mises stress**

| Dimension | Stress in<br>XX | Stress in<br>XY | Stress in<br>XZ | Stress in<br>YY | Stress in<br>YZ | Stress in<br>ZZ |
|-----------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 19.0      | 31.9973         | 23.9885         | 16.1352         | 33.5879         | 15.3810         | 13.9078         |
| 24.0      | 40.7395         | 20.4740         | 16.5940         | 39.3902         | 14.9773         | 12.4604         |
| 24.1      | 38.5167         | 25.1254         | 15.1614         | 39.5282         | 13.8239         | 9.7683          |
| 24.2      | 39.2773         | 26.1266         | 20.8050         | 37.6020         | 15.1394         | 9.7138          |
| 24.5      | 32.8629         | 18.9586         | 20.8340         | 38.5613         | 13.3511         | 8.9099          |
| 25.0      | 41.2990         | 18.0537         | 12.9423         | 34.1740         | 13.6759         | 9.3259          |
| 25.5      | 34.6589         | 18.4056         | 17.2822         | 35.3518         | 13.6483         | 9.3067          |

# Result

- In our project consider that Stress inversely proportional to life of component.
- As per analysis found that, stress produced in actual component is 49.462 Mpa and life of component 2400 hours.
- After tuning dimensions of input gear and shaft. Stress value found 46.632 Mpa and life of component is 2545 hours as per relation given below.
- Stress x life= constant.

# Conclusion

- If dimensions change in shaft and gear then life of component is increase in 145 hours.
- If material change to shaft and gear then negligible change found in stress.
- If dimension of gear is incerased from 25mm to 26mm then there is increase stress after 26mm.