

Design and Development of Radial air engine

Guide : Prof. Rajesh kumar

prepared by: Dhiren Chaudhary Kaushik Panchal Yogesh Panchal Vivek Prajapati

Radial air engine

Why select this project ?

- It's work on pneumatic application.
- It is used in small distance motion apps. The speed requirement is low. It requires less power.
 Can be worked on low load capacity.
- This engine does not required any type of fossil fuel.
- This engine is non-polluted.

Problem definition

- "Design and construct radial air engine for mechanical application."
- Application found in industry:- Where small efforts required for movement in machine.
- Pneumatic means air energy.
- The working of this engine is based on energy of air which converts air energy in to some rotational energy.

Project background

- 1901 :- C. M. Manly constructed a fivecylinder radial engine.
- 1903–1904:- Jacob Ellehammer used his

experience constructing motorcycles to build the world's first air-cooled radial

engine.

objective

- Uses air energy for small movement of machine to reduce human effort.
- Small and light weight.
- With balance structure contained, smooth working with little vibration available.
- high efficiency, less engine cost.

SCOPE OF OBJECTIVE

- grass cutter, surface cleaning, etc...
- Small capacity automobile vehicles.
- All type of application where air energy is used.
- Vehicular transportation using a compressed air vehicle.
- pneumatic screwdrivers.

Methodology of project

Define problem

Literature survey

Design parts of engine

Construct model according to design

Support plate

Support plate

Cylinder Standard (1000 Position)

Support plate

Cylinder Standard (200 Position)

Cylinder

Cylinder (3 Required)

Piston & Connecting road

Crank disk

Crank Disk

Crank shaft

Crank pin

Air connecter

Air Supply Connector

Plate

1/4–20 Screws to attach <u>Standard</u> to <u>Main Bearing</u>-3 Required-Lengths Approximate

Spring loaded screw

Flywheel

Channel base

Alum Channel Base (or use wood, etc)

Radial air Engine

A Radial air engine having a plurality of cylinders, with each cylinder having an expansion chamber in ٠ part by a piston plate and a diversion chamber which is divided into two chambers by a slide plate, with the diversion chambers connected to a pressure supply line and to a pressure diversion line. The piston plate is connected to a piston rod by a lock. The expansion chamber holds an amount of compressed air held constant throughout the operation cycle. Expansion of the expansion chamber moves the piston plate and piston rod to rotate a crankshaft. At the end of the expansion stroke, the piston roads disconnected from the piston plate. The expansion chamber is compressed by pressurizing the diversion chamber below the slide plate, forcing the slide plate and push rods upwards, which pushes the piston plate upwards, until the piston plate can be held at a top position by a lock. The diversion chamber below the slide plate is pressurized by pressurized air from diversion chambers of cylinders in which the expansion chamber has been compressed. The piston force applied the connecting crank disk and crank disk rotating motion so that the crankshaft rotary motion. The flywheel to connect a crankshaft and the flywheel rotating. The air compressor supply the air through air pipe to piston.

Literature review

Sr.n o.	Author	Year	Journal	Description Of work	Points to be taken
1	Zhang Et. All.	2013	Entropy	It is suggested that at low working temperatures both maximum exergy efficiency and maximum work output can be used as the design objective, however, only maximum work output can be used as the design objective for the four- stage radial turbine over the working temperature range in this work.	Concept of radial air engine.

Sr. no	Author	Year	Journal	Description Of work	Points to be taken
2	-	2004	-	The Top Flite Radial Engine (hereafter referred to as Radial) is patterned after the Pratt & Whitney radial engines that powered numerous aircraft from the Golden Age of aviation.	Design of radial engine.
3	Prof. Sorathiya Arvind Et al.	2012	International Journal of Advanced Engineering Technology	Current four strokes single cylinder engine (bikes/moped) can be run on the compressed air with a few modifications that are the main objective of the study. Compressed air filled by electricity using a compressor. The electricity requirement for compressing air has to be considered while computing overall efficiency	Design of single cylinder.

Sr. no	Author	Year	Journal	Description Of work	Points to be taken
4.	Abhishek Lal	2013	INTERNATIONAL JOURNAL of RENEWABLE ENERGY RESEARCH	Compressed Air Engine is a better option to produce power to run automobile, generators etc. This paper contains design and dynamic analysis of a light weight single stroke compressed air engine it does not required any of the fossil fuels like petrol, diesel, CNG, LPG, hydrogen etc. to run engine and no power is required to start up engine only compressed air valve is to be opened. It works on compressed pressure air and hence is pollution free and 100% eco-friendly.	Compresse d air engine, zero pollution, air fuel

no				Of work	taken
5.	Chih-Yung Huang	2013	OPEN ACCESS Energies	This study presents a power output examination with the pressure and temperature measurements of a piston-type compressed air engine to be installed in compact vehicles as the main or auxiliary power system.	power performance & pressure.
6.	Prof. B. S. PATEL et al.	2011	National Conference on Recent Trends in Engineering & Technology	To convert a conventional IC engine into an Air Powered one, few components are to be replaced. First of all replace the spark plug with a pulsed pressure control valve which can create required pressure. Now the pulsed air firing in this valve is controlled by controlling the supply of electrical signal to the plunger.	Operation process for engine inside parts.

Sr. no.	Author	Year	Journal	Description Of work	Points to be taken
7.	Bharat Raj Singh and Onkar Singh	2012	International Journal of Rotating Machinery	A prototype air engine is built and tested in the laboratory. The experimental results are also seen much closer to the analytical values, and the performance efficiencies are recorded around 70% to 95%.	Improve the efficiency.
8.	S.K.M.Asikul Islam et al.	2012	International Mechanical Engineering Conference	The environmental pollution in the metropolitan cities is increasing rapidly mostly because of the increased number of fossil fuel powered vehicles.Many alternative options are now being studied through out the world. One of the alternative solutions can be a compressed air powered vehicle.	Compressed air engine.

Month	Proble Defina	em ation	Litera serve	ture	Design searchi	ng	Parts Purcha	sing	Parts Making		
	15 day	15 day	15 day	15 day	15 day	15 day	15 day	15 day	15 day	15 day	
August											
September											
October											
November											
December											
January											
February											
March											
April											

Analysis of acceleration of piston

Time(second)	Measure
1	6.2859
10	6.9110
20	6.2858
30	6.3338
40	6.8987
50	6.6255
60	6.3108
70	6.6782
80	6.9893
90	6.5225
100	6.4310

Analysis of position of piston

Position of cylinder

Velocity of piston

		AnalysisDefinition2::measure1(mm / sec)												Time(second)	Measure																			
	8.628526																										 					1	8.0893	
	8.128526		Â	Ì					1			1	Î	1	Ì		t	1	t	1	1	Ì	Î	Ì	Î		Â	Î	N			10	5.8863	
	7.628526														$\mathbf{\Lambda}$								$\mathbf{\Lambda}$									20	7.7814	
																																30	8.0580	
asure	7.128526							t			Ħ	Ħ	Ħ	Ħ	Ħ	1	Ħ	Ħ	Ħ	Ħ	Ħ		Ħ									40	6.0657	
Me	6.628526	+				╟	╢			$\left + \right $	\mathbb{H}	╢		$\left \right $		H	H	╢	╢	╢	╢	$\ $	$\ $				+	╢				50	6.3171	
	6.128526	_							_			Ц									Ц											60	7.9534	
	5 (2052)				V													/								V	V		V			70	6.9426	
5	5.628526																															80	5.1359	
	5.128526	28526 0 20 40 60 80			100			90	7.0943																									
Time (Sec)						100	7.8593																											

Velocity of Cranck disc

Results

> We have got the following RPM at different pressures of the compressed air fed into the piston cylinder.

≻We have used tachometer to measure the RPM of the shaft.

≻A graph between the air pressure and the RPM available at the output shaft has been shown in the Fig(figure no.).

Pressure	Rpm						
15	105						
20	256						
35	294						
40	425						
55	554						
60	642						
75	688						
80	780						
100	983						

pressure vs rpm

CONCLUSION

➢Radial air engines that we have designed can be used to operate sewing machine, surface cleaning by adding required mechanism or by using directly the rotary motion available at the output shaft.

≻Nowadays glass plates are being used in the building whether at exterior or interior so for cleaning these glass surfaces we an automated and with some minimal pressure which can clean the surface gently. For these purposes we can use radial air engine to power the device.

Engine dimensions as well as space acquired by the whole system is required to be large because of storage of pressurized air

Engine will be operated with high pressurized air for efficient working.

≻Material replacement gives another option for improvement of engine.

Design modification give better and efficient working of engine

