PROBLEM IN WELDING OF TWO DISSIMILAR MATERIALS

PREPARED BY MR. JIGAR PATEL MR. PARESH PATEL MR. RAJESH CHAUDHARY MR. JAYDIP SODHA

> **Guide by** prof. a.g. barad mechanical dept.

Objective of the work

- Very less work has been done on laser welding on dissimilar material.
- In this project Two dissimilar material stainless steel and copper For Laser Welding will be used.
- The optimization of the process parameters in laser welding operation will be carried out.
- We will try to weld very small sheets of dimension 80mm*30mm*1mm which were cut from the bigger sheet.

Why we select LBM?

PROBLEM STATEMENT

- Welding techniques as TIG, MIG and resistance welding have been used for many years but they have many problem.
- larger fusion area
- larger heat-affected zones
- higher Shrinkage
- bigger deformations
- more defects such as cracks

Aims of Laser Welding

- Deep penetration
- High speed
- Small heat-affected zone
- Fine welding seam quality
- Low heat input per unit volume
- Fiber optic beam delivery
- Ease of interface with robots

Basic Laser Principle

- LASER- Light Amplification by Stimulated Emission of Radiation.
- LASER, is a mechanism for emitting light within the electromagnetic radiation region of the spectrum, via the process of stimulated emission.
- The laser light is a narrow-wavelength electromagnetic spectrum monochromatic light.
- In manufacturing, lasers are used for cutting, bending, and welding metal and other materials.
- Lasers have also begun to be tested for directed-energy weapons. Lasers are used in medicine for surgery, diagnostics, and therapeutic applications.

Process parameters and design level

After the study of on of research paper, the main parameter affect on leaser welding are as given below.

S.N.	Variable	Code	Unite	Level 1	Level 2	Level 3	Level 4
1	Laser power	р	Kw	5.6	5.8	6.0	6.2
2	Welding speed	S	mm/sec	0.6	0.8	1.0	1.2
3	Pulse duration	Тр	ms	13	14	15	16

Jigsaw machine and grinding wheel machine

Workpiece before the welding (cooper & steel)

Chemical composition

20464/12 14		D	
20404/13-14		Date : 25-0	1-20
25 01 2014	T	Date : 25-0	1-20
23-01-2014.	ſe:	sted on Date : 25-0	1-20
lactory			
l Engineering College	e.,		
ce of 1.00mm Thk She	et		
to or mooning this one			
TM.A 240-12, Type-30)4		
ectroscopy-OES			
TM E1086-08			
ar/ Patel Paresh/ Sodha	Jaydip/ Raje:	sh.	
	(%)	Std.Value	
RBON	0.051	0.08 Max	
ICON	0.294	0.75 Max	
OSPHORUS	1.330	2.00 Max	
	0.020	0.043 Max	
ROMIUM	18 730	18.0 - 20.0	
CKEL	8.190	8.0 - 10.5	
End of the Rer	ort		
	20464/13-14 25-01-2014. factory I Engineering College ce of 1.00mm Thk She TM,A 240-12, Type-30 cetroscopy-OES TM E1086-08 ar/ Patel Paresh/ Sodha ar/ Patel Paresh/ Sodha RBON ICON INGANESE OSPHORUS LPHUR ROMIUM CKEL End of the Rep	20464/13-14 25-01-2014. Te: factory I Engineering College., ce of 1.00mm Thk Sheet TM,A 240-12, Type-304 ectroscopy-OES TM E1086-08 at/ Patel Paresh/ Sodha Jaydip/ Rajes RBON 0.051 ICON 0.294 NGANESE 1.330 OSPHORUS 0.026 LPHUR 0.011 ROMIUM 18.730 :KEL 8.190 End of the Report	20464/13-14 Date : 25-0 Date : 25-0 Date : 25-0 25-01-2014. Tested on Date : 25-0 factory I Engineering College., ce of 1.00mm Thk Sheet TM,A 240-12, Type-304 rectroscopy-OES TM E1086-08 ar/ Patel Paresh/ Sodha Jaydip/ Rajesh. (%) RBON 0.051 0.08 Max ICON 0.294 0.75 Max NIGANESE 1.330 2.00 Max OSPHORUS 0.026 0.045 Max LPHUR 0.011 0.030 Max ROMIUM 18.730 18.0 - 20.0 :KEL 8.190 8.0 - 10.5 End of the Report

LBM

Wavelength	1.06µm			
Maximum average power	200W			
Pulse energy	901			
Peak pulse power	100kW			
Pulse duration	0.5-20ms			
Pulse frequency	20Hz			
Focus diameter	0.3-2.2mm			

Optical microscope and UTM

Workpiece After the welding (cooper & steel)

No of Experiment

- When focus position of laser at the center of welding line (A).
- When focus position of laser at 0.5 mm toward the copper side (A').
- When focus position of laser beam 0.5 mm toward the stainless steel plate side.

Experiment No. 1.

Exp no.	P(kw)	S(mm/s)	T _p (ms)	Tensile strength				
1	1	1	1	17.20				
2	2	1	2	17.65				
3	3	1	3	18.21				
4	4	1	4	19.06				
5	2	2	1	17.62				
6	3	2	2	17.90				
7	4	2	3	18.63				
8	1	2	4	17.38				
9	3	3	1	17.74				
10	4	3	2	18.14				
11	1	3	3	17.23				
12	2	3	4	17.46				
13	4	4	1	18.08				
14	1	4	2	16.85				
15	2	4	3	17.25				
16	3	4	4	17.80				

Optical microscope

Main effect plots for tensile strength

Response Table for Signal to Noise Ratios Larger is <u>Better</u>

Level	1	2	3	4	Delta	Rank
р	24.69	24.86	25.06	25.33	0.64	1
S	25.05	25.05	24.93	24.86	0.26	2
Tp	24.94	24.93	25.02	25.06	0.14	3

The best result gain when input process parameters are P -6.2, S-.6, and Tp-16

Experiment No. 2.

Exp no.	P(kw)	S(mm/s)	T _p (ms)	Tensile strength		
1	1	1	1	16.85		
2	2	1	2	17.31		
3	3	1	3	17.8		
4	4	1	4	18.62		
5	2	2	1	17.12		
6	3	2	2	17.61		
7	4	2	3	17.56		
8	1	2	4	16.63		
9	3	3	1	17.36		
10	4	3	2	17.42		
11	1	3	3	16.41		
12	2	3	4	16.89		
13	4	4	1	17.31		
14	1	4	2	16.26		
15	2	4	3	16.62		
16	3	4	4	17.24		

17

Main effect plots for tensile strength

Response Table for Signal to Noise Ratios Larger is <u>Better</u>

Level	1	2	3	4	Delta	Rank
р	16.54	16.99	17.50	17.73	1.19	1
S	17.65	17.23	17.02	16.86	0.79	2
Тр	17.16	17.15	17.10	17.35	0.25	3

The best result gain when input process parameters are P -6.2, S-.6, and Tp-16

Experiment No. 3.

Exp no.	P(kw)	S(mm/s)	T _p (ms)	Tensile strength			
1	1	1	1	16.12			
2	2	1	2	16.2			
3	3	1	3	16.56			
4	4	1	4	17.2			
5	2	2	1	16.15			
6	3	2	2	16.32			
7	4	2	3	16.84			
8	1	2	4	16.09			
9	3	3	1	16.21			
10	4	3	2	16.78			
11	1	3	3	15.95			
12	2	3	4	16.05			
13	4	4	1	16.35			
14	1	4	2	15.75			
15	2	4	3	15.95			
16	3	4	4	16.18			

Main effect plots for tensile strength

Response Table for Signal to Noise Ratios Larger is Better

Level	1	2	3	4	Delta	Rank
р	24.07	24.13	24.25	24.50	.43	1
S	24.36	24.27	24.11	24.11	.24	2
Тр	24.19	24.22	24.25	24.28	.09	3

The best result gain when input process parameters are P -6.2, S-.6, and Tp-16

ANOVA analysis

	А	В	С	D	E	F	G	ΗI	J	ΚL	M	0	Р	CR	S	τU	V
1	EX-NO	P(KW)	S(mm/s)	Tp(ms)	Tensile strenght	(Tensile strength)2	predicted value		some values		Some of squares		Mean squares varians		Varians ratio of F		Contribution %
2	1	5.6	0.6	13	17.2	295.84	17.2512	fa=	3	SA=	0.09605	VA=	0.0321	FA=	2.8407	PA=	41.97
3	2	5.8	0.6	14	17.65	311.5225	17.7862	fb=	3	SB=	0.04294	VB=	0.01431	FB=	1.2663	PB=	18.76
4	3	6	0.6	15	18.21	331.6041	18.3212	fc=	3	SC=	0.02334	VC=	0.00778	FC=	0.6876	PC=	10.2
5	4	6.2	0.6	16	19.06	363.2836	18.8562	T=	284.2	S0=	0.0678	V0=	0.0113	F0=	1	P0=	29.63
6	5	5.8	0.8	13	17.62	310.4644	17.5026	N=	6	F0=	1						TOTAL=100%
7	6	6	0.8	14	17.9	320.41	18.0376	C.F=	5048.1								
8	7	6.2	0.8	15	18.63	347.0769	18.5726	S.T=	0.2288								
9	8	5.6	0.8	16	17.38	302.0644	17.3636	A1=	68.66								
10	9	6	1	13	17.74	314.7076	17.754	A2=	69.98								
11	10	6.2	1	14	18.14	329.0596	18.289	A3=	71.65								
12	11	5.6	1	15	17.23	296.8729	17.08	A4=	73.94								
13	12	5.8	1	16	17.46	304.8516	17.615	B1=	72.12								
14	13	6.2	1.2	13	18.08	326.8864	18.0054	B2=	71.53								
15	14	5.6	1.2	14	16.85	283.9225	16.7964	B3=	70.51								
16	15	5.8	1.2	15	17.25	297.5625	17.3314	B4=	69.26								
17	16	6	1.2	16	17.8	316.84	17.8664	C1=	70.64								
18					284.2	5052.969	284.4288	C2=	70.54								
19					N=6			C3=	71.32								
20								C4=	71.7								
21																	
22																	
23																	

Effect of focusing position

Main effect plot gives the optimum factor levels as P = 6.2, S = .6 and Tp = 16.

ADVANTAGES

- The heat influence zone is very small because of a very short pulse duration.
- laser systems can be made completely automatic in order to have high accuracy welds.
- Improvements in welding speed, productivity and accuracy are achieved at the same time.
- Very high finish welds are obtained.
- Cost-effective for stainless steel applications.
- Three-dimensional geometries can be welded
- Laser welding can produces a very narrow heat affected zone (HAZ) with low residual stress and small welding defects in the base metal.

APPLICATIONS

- Many applications in various industry sectors such as
- Electronics
- Medical
- Consumer goods
- Automotive

Conclusion

- Laser welding is a very successful process to join AISI304 stainless steel and copper.
- It is necessary that the edges of the plate were cleaned and grinded along the weld line to ensure full contact.
- Focusing position of the laser beam also effect the response in case of joining of copper and stainless steel.
- Main effect plot gives the optimum factor levels as P = 6.2, S = .6 and Tp = 16.

THANK YOU