Modelling and Fabrication of Semi-Automatic pneumatic number and word punching on metal job machine.

Presented By: ME18
Group Id: 9000

GUIDED BY:-
Prof. Dheeraj Sardana

PREPARED BY:-
Patel Savan (09ME45)
Patel Bhaumik (11ME103)
Chaudhari Hardik (11ME84)
Modi Kuldeep (11ME87)
Outlook

- Introduction
- Objectives of the present Investigation
- Literature Review
- Project parts
- Calculation of force
- Methodology
- Modeling
- Work plan for Project work
- Conclusion
- References
Pneumatic System

- A pneumatic system is a system that uses compressed air to transmit and control energy.

- Pneumatic systems are used in controlling train doors, automatic production lines, mechanical clamps etc.
Why we choose the Pneumatic system?

- High effectiveness
- High durability and reliability
- Simple design
- High adaptability to harsh environment
- Safety
- Easy selection of speed and pressure
- Environmental friendly
- Economical
When this idea come from?
Objectives of the present Investigation

- In this project work, we will manufacture a semi automatic pneumatic punching machine with very less cost comparing to computer machine and try to maintain same quality of punching.
Literature Review

1. **Design of a Pressure Observer and its Application to a Low-Cost Pneumatic Control System [1]**

 - Pneumatic systems and observer-based approaches for controlling position and stiffness eliminate the need for pressure and force sensors.
 - Estimates pressure in the pneumatic actuator chamber, acting instead of a sensor.

2. **Design and applications of a pneumatic accelerator for high speed punching [2]**

 - Design and manufacture an accelerator as an energy converter to form the different types of metals in high speed. Instead of using high speed forming machines, developing some energy converter systems that convert different types of energy into mechanical energy are preferable.

- A micro hole punching system was developed and micro holes of 100µm in diameter were successfully made on brass sheets of 100µm in thickness.
- Currently effort is underway to punch holes of 50µm in diameter by modifying the present punching system.

- Elastic tool that consists of a urethane sheet and a metal die is used for punching instead of a conventional metal punch and die.
- A suitable thickness of the urethane is within the range of 3.0–5.0 mm. The desirable ratio d/R between the radius of the metal punch R and hole diameter d is within the range from 0.48 to 0.64.
5. The development of hi-speed punching system using a couple of rotating bodies[11]

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>➔ To punch a sequence of tiny holes just a few millimeters apart, the feed speed of a strip of a metal to the punching machine cannot exceed 2m/min. We have therefore developed a new technique such as the feeding speed can be up to 100 m/min.</td>
<td></td>
</tr>
<tr>
<td>➔ The precision of whole sizes and pitches is good even in the punching at high speeds because it is determined by the size of punching tools, which means that the new technique requires no feeder.</td>
<td></td>
</tr>
</tbody>
</table>
PROJECT PARTS

- Double Acting Cylinder

120psi Pneumatic double acting cylinder (60*80).
➢ Solenoid valve

Solenoid coil
Solenoid valve wide switch
Fixture of tool

Punching rod (carbon steel)
Tank- 120psi plastic round with 3 output
Pipe- 190psi ,6mm pipe (air)
Pipe connector (push)
12v D.C coil
Compressor – 12v D.C, 300psi
Working Layout

1. Switch board
2. 12v Ac to Dc coil
3. 12v DC compressor
4. Presser tank
5. Solenoid valve
6. Double acting cylinder
Final Working Model
CALCULATION OF FORCE

CYLINDER THRUST

F = Cylinder thrust in Kg.
D = Dia of piston in cm
d = Dia of piston rod in cm.
p = Operating air pressure in “bar”.

Double acting in forward stroke

\[F = \frac{\pi}{4} D^2 p \]

D= 2.8 cm
P = 6.8 bar

\[F = 41.87 \text{ cm}^2 \text{ bar} \] \hspace{1cm} (1)
THEORETICAL AIR CONSUMPTION CALCULATIONS

Let
\(D = \) Dia of piston in cm.
\(d = \) piston rod dia.
\(L = \) stroke in cm.
\(P = \) Air pressure in bar

Free air consumption in liters for forward stroke
\[
C = \left(\frac{\pi}{4} D^2 (P + 1) L \right) / 1000
\]

\(D = 2.8 \) cm
\(P = 6.8 \) bar
\(L = 8 \) cm

\(= 384.23 \text{ cm}^3\text{bar} \) \(\quad \text{.........................}(2) \)
PUNCHING FORCE

Punching force \((Fp) = P \times t \times \sigma S\)

Where \(P = 2 \times \text{tool area}\)
\(\sigma S = \text{shear strength of punching material}\)
\(P = \text{length of periphery to be cut in cm.}\)

CALCULATION FOR ALUMINUM ALLOY

\(t = 0.1 \text{ cm}\)
\(\sigma S = 82.7 \text{ Mpa of Aluminum 6061}\)

\[
Fp = P \times t \times \sigma S \\
= (2 \times 0.1 \times 0.1 \times 82.7) \\
= 1.654 \text{ cm}^2\text{mpa}
\]

Now converting \(\text{cm}^2\text{Mpa}\) value in \(\text{cm}^2\text{bar}\)

We know that 1 \(\text{cm}^2\text{Mpa} = 10 \text{ cm}^2\text{bar}\)

So that

\(Fp = 16.54 \text{ cm}^2\text{bar} \) \(..................(3)\)
Comparing value of equation 1 and 3 value of project punching machine is higher than required value so that we can easily punch on aluminum 6061 alloy.

CALCULATION FOR CAST IRON

\[t = 0.1 \text{ cm} \]

\[\sigma_S = 195 \text{ Mpa} \text{ Cast Iron} \]

\[F_p = P \times t \times \sigma_S \]
\[= (2 \times 0.1 \times 0.1 \times 195) \]
\[= 3.9 \text{ cm}^2\text{mpa} \]

Now converting \(\text{cm}^2\text{Mpa} \) value in \(\text{cm}^2\text{bar} \)
We know that 1 \(\text{cm}^2\text{Mpa} \) = 10 \(\text{cm}^2\text{bar} \)
So that
\[F_p = 39 \text{ cm}^2\text{bar} \](4)

Comparing value of equation 1 and 4 value of project punching machine is higher than required value so that we can easily punch on cast iron.
Methodology

- Analysis of working principal and details of Pneumatic system.
- Modeling system (work in Solid works)
- Pressure Calculation of the system.
- Modeling system as per dimension
Manufacturing the system

Practically test on metal by the system

Analysis and rework on system (if required after practically test)

Conclusion

End
MODELING

- We use solid works 2013 software.
- Solid works is a computer graphics system for modeling various mechanical designs for performing related design and manufacturing operations.
- The system uses a 3D solid modeling system as the core, and applies the feature base parametric modeling method.
- solid works is a feature based parametric solid modeling system with many extended design and manufacturing application.
Desire model of project
Final model of project
<table>
<thead>
<tr>
<th>SR.NO</th>
<th>WORK PLAN TOPIC</th>
<th>MONTH OF WORK</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Find out best system.</td>
<td>July</td>
</tr>
<tr>
<td>2</td>
<td>Analyses of working principal and detail of new system.</td>
<td>August, September</td>
</tr>
<tr>
<td>3</td>
<td>Modeling system</td>
<td>October, November</td>
</tr>
<tr>
<td>4</td>
<td>Calculation of system.</td>
<td>December</td>
</tr>
<tr>
<td>5</td>
<td>Manufacturing the system</td>
<td>January, February</td>
</tr>
<tr>
<td>6</td>
<td>Practically test the system</td>
<td>March</td>
</tr>
<tr>
<td>7</td>
<td>analyze and rework on system (if required after practically test)</td>
<td>March</td>
</tr>
<tr>
<td>8</td>
<td>Conclusion</td>
<td>April</td>
</tr>
</tbody>
</table>
Conclusion

- Pneumatic system is better than hydraulic system and mechanical system in terms of maintenance, cost, accuracy, productivity.
- Based on calculation project model work on max 42 bar punching force.
REFERENCES

THANK
YOU