Modelling and Fabrication of Semi-Automatic pneumatic number and word punching on metal job machine.

Presented By:ME18

Group Id:9000

GUIDED BY:-

Prof.Dheeraj Sardana

PREPARED BY:-

Patel Savan(09ME45)Patel Bhaumik(11ME103)Chaudhari Hardik(11ME84)Modi Kuldeep(11ME87)

Outlook

- Introduction
- > Objectives of the present Investigation
- Literature Review
- Project parts
- Calculation of force
- Methodology
- ➤ Modeling
- ➢ Work plan for Project work
- ➤Conclusion
- ➢References

INTRODUCTION

Pneumatic System

 \triangleright A pneumatic system is a system that uses compressed air to transmit and control energy.

Pneumatic systems are used in controlling train doors, automatic production lines, mechanical clamps etc.

Why we choose the Pneumatic system?

- High effectiveness
- High durability and reliability
- Simple design
- High adaptability to harsh environment
- ➤ Safety
- Easy selection of speed and pressure
- Environmental friendly
- ➢ Economical

When this idea come from ?

	ΔΡ	JLL	0	1
UNIT	VIBRATING SCREEN	M/CNO.		
GUJA	actured By : RAT APOLLO INDUSTRIE MEHSANA	MODEL S LTD.	1850/3C Phone : +91 79 26444597-98 Fax : +91 79 26564705 Web : www.apollo.co.in	
	AT (INDIA)	E IN INDIA	Web : www.apollo.co.in	

@ THIS PHOTO TAKEN BY SAVAN PATEL AT GUJARAT APOLLO

Objectives of the present Investigation

➤ In this project work, we will manufacture a semi automatic pneumatic punching machine with very less cost comparing to computer machine and try to maintain same quality of punching.

Literature Review

1. Design of a Pressure Observer	\rightarrow Pneumatic systems and observer-	
and its Application to a Low-Cost	based approaches for controlling	
Pneumatic Control System [1]	position and stiffness eliminate the	
	need for pressure and force sensors.	
	\rightarrow Estimates pressure in the pneumatic	
	actuator chamber, acting instead of a	
	sensor.	
2. Design and applications of a	\rightarrow Design and manufacture an	
pneumatic accelerator for high	accelerator as an energy converter to	
speed punching [2]	form the different types of metals in	
	high speed. Instead of using high speed	
	forming machines, developing some	
	energy converter systems that convert	
	different types of energy into	
	mechanical energy are preferable.	

3. Development of Micro Punching	\rightarrow A micro hole punching system was	
System [5]	developed and micro holes of 100µm in	
	diameter were successfully made on	
	brass sheets of 100µm in thickness.	
	\rightarrow Currently effort is underway to punch	
	holes of 50µm in diameter by modifying	
	the present punching system.	
4. Flexible punching method using an	\rightarrow Elastic tool that consists of a urethane	
elastic tool instead of a metal punch	sheet and a metal die is used for	
[7]	punching instead of a conventional metal	
	punch and die.	
	\rightarrow A suitable thickness of the urethane is	
	within the range of 3.0–5.0 mm. The	
	desirable ratio d/R between the radius of	
	the metal punch R and hole diameter d is	
	within the range from 0.48 to 0.64.	

5. The development of hi-speed punching system using a couple of rotating bodies[11]

 \rightarrow To punch a sequence of tiny hole just a few millimeters apart, the feed speed of a strip of a metal to the punching machine cannot exceed 2m/min. We have therefore developed a new technique such as the feeding speed can be up to 100 m/min. \rightarrow The precision of whole sizes and pitches is good even in the punching at high speeds because it is determined by the size of punching tools, which means that the new technique requires no feeder.

PROJECT PARTS

> Double Acting Cylinder

120psi Pneumatic double acting cylinder(60*80).

> Solenoid valve

Solenoid coil

Solenoid valve wide switch

Fixture of tool

Punching rod (carbon steel)

Tank- 120psi plastic round with 3 out put

Pipe- 190psi ,6mm pipe (air)

Pipe connector (push)

12v D.C coil

Compressor – 12v D.C , 300psi

Working Layout

Final Working Model

CALCULATION OF FORCE

CYLINDER THRUST

F = Cylinder thrust in Kg.
D = Dia of piston in cm
d = Dia of piston rod in cm.
p = Operating air pressure in "bar".

Double acting in forward stroke

 $F = \frac{\pi}{4} D^2 p$ D = 2.8 cmP = 6.8 bar

 $F = 41.87 \ cm2 \ bar \dots(1)$

THEORETICAL AIR CONSUMPTION CALCULATIONS

Let

- D = Dia of piston in cm.
- d = piston rod dia.
- L = stroke in cm.
- P = Air pressure in bar
- Free air consumption in liters for forward stroke
- $C = \left\{\frac{\pi}{4}D^{2}(P+1)L\right\} / 1000$
- D= 2.8 cm
- P = 6.8 bar
- L=8 cm

= 384.23 *cm*3bar(2)

PUNCHING FORCE Punching force $(Fp) = P \times t \times \sigma S$ Where $P=2 \times tool area$ σS = shear strength of punching material P = length of periphery to be cut in cm.CALCULATION FOR ALUMINUM ALLOY t = 0.1 cm $\sigma S = 82.7$ Mpa of Aluminum 6061 $Fp = P \times t \times \sigma S$ $= (2 \times 0.1 \times 0.1 \times 82.7)$ = 1.654 *cm*2mpa Now converting *cm*2Mpa value in *cm*2bar We know that $1 cm^2Mpa = 10 cm^2bar$

So that

Fp= 16.54 *cm2bar*(3)

Comparing value of equation 1 and 3 value of project punching machine is higher than required value so that we can easily punch on aluminum 6061 alloy.

CALCULATION FOR CAST IRON

t= 0.1 cm σS = 195 Mpa *Cast Iron* $Fp = P \times t \times \sigma S$ $= (2 \times 0.1 \times 0.1 \times 195)$ $= 3.9 \ cm 2$ mpa Now converting cm 2Mpa value in cm 2barWe know that 1 cm 2Mpa = 10 cm 2barSo that

$Fp = 39 \ cm2bar$(4)

➢Comparing value of equation 1 and 4 value of project punching machine is higher than required value so that we can easily punch on cast iron.

Methodology

Analysis of working principal and details of Pneumatic system.

MODELING

➢ We use solid works 2013 software.

➤ Solid works is a computer graphics system for modeling various mechanical designs for performing related design and manufacturing operations.

The system uses a 3D solid modeling system as the core, and applies the feature base parametric modeling method.
solid works is a feature based parametric solid modeling system with many extended design and manufacturing application.

Desire model of project

Final model of project

Work Plan

SR.NO	WORK PLAN TOPIC	MONTH OF WORK
1	Find out best system.	July
2	Analyses of working principal and detail of new system.	August, September
3	Modeling system	October, November
4	Calculation of system.	December
5	Manufacturing the system	January, February
6	Practically test the system	March
7	analyze and rework on system (if required after practically test)	March
8	Conclusion	April

Conclusion

➢ Pneumatic system is better than hydraulic system and mechanical system in terms of maintenance, cost, accuracy, Productivity.

➢ Based on calculation project model work on max 42 bar punching force.

REFERNCES

- Design of a Pressure Observer and its Application to a Low Cost Pneumatic Control System", Takahiro Kosaki and Manabu Sano, year 2011 , Int. J. of Automation TechnologyVol.5No 4.
- Design and applications of a pneumatic accelerator for high speed punching", Su"leyman Yaldız, Hacı Sag`lam, Faruk U nsacar, Hakan Isik, 2007, Materials and Design 28. 889–896.
- Development of a micro-forming system for micro-punching process of micro-hole arrays in brass foil", Jie Xu, Bin Guo, Debin Shan, Chunju Wang, Juan Li, Yanwu Liuc, Dongsheng Qu, 2012, Journal of Materials Processing Technology 212, 2238–2246.
- 4. A new design method for single DOF mechanical presses with variable speeds and length-adjustable driving links", Ren-Chung Soong ,2010 ,Mechanism and Machine Theory 45, 496–510.
- 5. Development of Micro Punching System", B. Y. Joo', S. I. Oh, B. H. Jeon.1980

- Comparison of three advanced hard coatings for stamping applications", X.T. ZengU, S. Zhang, T. Muramatsu ,2000, Surface and Coatings Technology 127/38-42.
- 7. Flexible punching method using an elastic tool instead of a metal punch" presented by Hisaki Wataria, Hiroshi Onab, Yu Yoshida, 2003, Journal of Materials Processing Technology 137,151–155.
- Thermal behavior of aluminum-coated 22MnB5 in hot stamping under dry and lubricated conditions", Akira Azushimaa, Kosuke Udab, Hiroki Matsudaa, 2014, Journal of Materials Processing Technology 214,3031– 3036.
- 9. Temperature conditions during 'cold' sheet metal stamping", stamping Michael P. Pereiraa, Bernard F. Rolfe,2014 ,Journal of Materials Processing Technology 214, 1749–1758.
- 10. Development of a micro-punching machine and study on the influence of vibration machining in micro-EDM", Gwo-Lianq Chern, Ying-Jeng Engin Wu, Shun-Feng Liu, 2006, Journal of Materials Processing Technology 180, 102–109.

- The development of hi-speed punching system using a couple of rotating bodies", K. Shimizu, S. Taya ,2004,Journal of Materials Processing Technology 155–156, 1157–1163.
- 12. Design and application an integrated elementselection model for press automation line" Kerim Cetinkaya,2007, Materials and Design 28,217–229.
- 13. Optimization of Power Transmission on Mechanical Forging Presses"Zdenek Chval*, Milan Cechura,2014, Procedia Engineering 69,890 – 896.

14. Design & Fabrication of Pneumatically Operated Plastic Injection
Molding Machine Poonam G. Shukla, Gaurav P. Shukla, ISSN: 2277-3754
ISO 9001:2008 Certified International Journal of Engineering and
Innovative Technology (IJEIT) Volume 2, Issue 7, January 2013

THANK YOU