Design and Development of Jig for drilling machine

Group Members:-

Rehan G. Farsikhan (110780119057)
Mikin N. Patel (110780119055)
Suraj J. Pandya (110780119028)
Parvez A. Kherada (110780119099)

Guided by,
Prof. N.N. Chaudhary
Contents:

- Defination of jig and fixture:
- Introduction & Why automatic jig and fixture:
- Objectives of Present Investigation:
- Application:
- Literature review:
- Planning & Design Functions Parameters:
- Block diagram of project:
- Methodology of project and future planning:
- Design equations:
What is Jig and Fixture?

- These are work holding device and tool guided device. Quality of performance of process is largely depends on design of jig and fixture.

- A jig differs from a fixture in sense of that it guides a tool to its correct position.
Introduction

• A CNC can also do the drilling work with accuracy but the cost of a CNC is very high. For working with this machine we need special training, which is very costly. Its use for automation into the manufacturing companies.

• So in our project we are creating a one model like CNC. our model is use for the drilling purpose and automation,its a jig, which is use for the drilling and automation. its easy to use and understand. so its easy to use in manufacturing companies.
Objectives of Present Investigation

• This project basically consists of manufacturing of a fixture for drilling machine. It has to reduce the time and to increase the accuracy of the drilling machine.

• This project is mainly for small scale industries. This will be very useful for the mass production. So this project is basically for automation of the drilling machine.

• So our project will help to make sure that the time and cost constraint is resolved.
APPLICATION

• Where Less skill labours are worked
• Fast work with high accuracy in industry
• This application can be also used for milling or any kind of cutting machine
• For mass production in small industries
<table>
<thead>
<tr>
<th>Design and requirement</th>
<th>Method</th>
<th>Result</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Better quality and high production</td>
<td>• SPM method are use • Comparisons of SPM, manual method</td>
<td>SPM method are less costly compared CNC And less time required manually</td>
<td>M.P. Groover In USA, 2008</td>
</tr>
<tr>
<td>development of automated jig saw machine</td>
<td>Three step • Size • User interface and programming • Communication link</td>
<td>avoid this point • serious accidents • inaccuracy in profiles • time consumption • loss of raw material</td>
<td>Prajakta H. Dahake, Vivek V. Patil (2013)</td>
</tr>
<tr>
<td>Design of Jigs and Fixtures for Hydraulic Press Machine</td>
<td>Design(U,V shape), Simulation, analysis in ANSY software</td>
<td>Better gripping and holding, Less deformation,</td>
<td>Taufik, R.S., Hirmanto</td>
</tr>
<tr>
<td>Design and requirement</td>
<td>Method</td>
<td>Result and Application</td>
<td>Reference</td>
</tr>
<tr>
<td>------------------------</td>
<td>--------</td>
<td>------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Design and Finite Element Analysis of JIGS and Fixtures for Manufacturing of Chassis Bracket</td>
<td>FEM</td>
<td>Manufacturing of Chassis Bracket of Bajaj car RE60 (passenger)</td>
<td>Sawita D. Dongre</td>
</tr>
<tr>
<td>Mathematic simulation of +13 mm particles motion in jig</td>
<td>1. Analysis of particle motion (vibration, motion equation, Velocity, Acceleration)</td>
<td>The equations might be used directly in control process of jig.</td>
<td>Kuang Ya-li</td>
</tr>
<tr>
<td>Implementation of Automatic Identification Technology in a Process of Fixture</td>
<td>Radio Frequency Identification (RFID) technology</td>
<td>automated data identification</td>
<td>Stevan Stankovski</td>
</tr>
<tr>
<td>Design and requirement</td>
<td>Method</td>
<td>Result and Application</td>
<td>Reference</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Inaccuracy of the AO ELFN recon jig: A case series</td>
<td>ELFN(EXPERT LATERAL FEMORAL NAIL)</td>
<td>USED IN SURGEONS (IN X–RAY RADIOPHOTOGRAPHY)</td>
<td>O.A. Ibrahim, R. Freeman, G.J.R. Slater</td>
</tr>
<tr>
<td>Planar malty-reflecting time of flight mass analyzer With a jig saw ion path</td>
<td>MR TOF(MULTI-REFLECTING TIME OF FLIGHT)</td>
<td>HIGH TRANSMISSION AND STABLE OPERATION</td>
<td>Mikhail yavor, Juri hasin, Boris kozlov</td>
</tr>
<tr>
<td>Self-optimization in large scale assembly</td>
<td>SELF-OPTIMIZING CONTROL ALGORITHMS</td>
<td>AIR CRAFT PRODUCTION AND INCREASE THE</td>
<td>R. Schmitt, M. Janssen</td>
</tr>
<tr>
<td>Design and requirement</td>
<td>Method</td>
<td>Result and Application</td>
<td>Reference</td>
</tr>
<tr>
<td>------------------------</td>
<td>--------</td>
<td>------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>ULTMYMATE TROUGH- Fabrication, Erection and commissioning of the worlds largest parabolic trough collector</td>
<td>SCA(solar collector assembly)</td>
<td>Solar power plant</td>
<td>A. Schweitzer W. Schiel P. Nava</td>
</tr>
<tr>
<td>Components</td>
<td>Type</td>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>-----------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Lead screw</td>
<td>Single thread</td>
<td>Nominal diameter(d) outer diameter(Do) core diameter(Dc) Pitch(p) Mean diameter(Dm) Lead(l)</td>
<td></td>
</tr>
<tr>
<td>microcontroller</td>
<td>Microcontroller 89s52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bearing</td>
<td>Slider bearing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>motor</td>
<td>Stepper Motor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bolt and nut</td>
<td>Single thread</td>
<td>Diameter</td>
<td></td>
</tr>
</tbody>
</table>
Design:-

1. Lead screw
2. Gear pair
3. Bolt and nut
4. Motor calculation
<table>
<thead>
<tr>
<th>Torque required</th>
<th>Total Motor Torque Required, (T = T_1 + T_2)</th>
<th>T1-due to inertia (T_2)-frictional</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(T_1 = w \times (d/2) = 545 \text{ N.mm})</td>
<td>Total (T = 755 \text{ N.mm})</td>
</tr>
<tr>
<td></td>
<td>(T_2 = w \times (d/2) \times \tan(\phi + \alpha) = 230 \text{ N.mm})</td>
<td>(T_1) due to inertia (T_2)-frictional</td>
</tr>
</tbody>
</table>

Load on lead screw
- Tensile stress
- Torsion stress
- Buckling effect

\[\sigma = \frac{w}{(\pi/4 \times d^2)} = 0.522 \text{ Mpa} \]
\[\Gamma = \frac{16T}{(\pi/4 \times d^3)} = 2.16 \text{ Mpa} \]

Material strength
- Tensile stress
- Torsion stress

\[\sigma_t = \frac{\sigma_y}{f.o.s} = 112 \text{ Mpa} \]
\[\sigma_c = 1.5 \times 112 = 168 \text{ Mpa} \]
\[\tau = 0.5 \times \sigma_t = 0.5 \times 112 = 56 \text{ Mpa} \]
Design parameter

• Lead Screw
 P=3 mm d=13 mm l=280 mm µ=0.15
 Dm =11.5 mm , ƛ = 8.530

• Design of Bolt
 p=2 mm l=63 mm d=6 mm

• Design of nut
 P=2 mm h=6 mm

• Design motor
 RPM= K1 * V, where, K1= induced voltage constant, V=voltage applied
CONTROLLER UNIT
Microcontroller
LCD
Circuit diagram
Power supply diagram
Transformer
Proto type Pro e Model
Model Preparation
THANK YOU