DESIGN AND MODIFICATION OF THREE SHAFT THRESHING MACHINE IN AGRICULTURE TECHNOLOGY

PROJECT MEMBERS:

1. Krupal Patel Roll No.:D12me27 Enroll No.:120783119010
2. Jitendra Patel Roll No.:D12me22 Enroll No.:120783119013
3. Dainik Patel Roll No.:10me55 Enroll No.:100780119058
4. Sanjay Rajput Roll No.:D12me33 Enroll No.:120783119031

GROUP NO.: 30 GROUP ID.: 9917

Under Guidance of : Prof. N.N.CHAUDHARY

Department of Mechanical engineering,
Smt. S. R. Patel Engineering College,
Dabhi, Unjha-384170
CONTENTS

• INTRODUCTION
• METHODOLOGY
• VARIOUS PARTS OF THRESHER MACHINE
• DESIGN OF THREE SHAFT THRESHER MACHINE
• DESIGN OF ELEVATING SYSTEM
• ADVANTAGES
• CONCLUSION
• REFERANCES
• APPENDIX
INTRODUCTION

• In past of 20th century conventional system of threshing was used for threshing the crop like manual system, pedal thresher and then implementation of simple axial thresher was done. Threshers are used in agriculture for threshing the crops like wheat, rice, corn, millet, castor etc. Just now day’s threshers are used in single or double shafts.
In the single shafting thresher machine rotor and blowers are mounted on same shafts. Required Input RPM to the threshing shaft is given by belt and pulley drive from the input power unit eg. Tractor engine. There are two blowers mounted one is for suction and throwing chopped waste and second is for fine cleaning of the output grain. Body of very heavy gauge welded steel plates with the following features.
In the double shafting thresher machine rotor and blowers are mounted on different shafts. Required Input RPM to the threshing shaft is given by belt and pulley drive from the input power unit e.g. Tractor/motor or engine. There are two blowers mounted one is for suction and throwing chopped waste and second is for fine cleaning of the output grain. Body of very heavy gauge welded steel plates are used in threshers.
INDUSTRY DEFINED PROBLEM

Ergonomic problems

- Arm injury during feed the crops in bucket.
- Uncomfortable design of feeding hoper.
- Separation of grain during feeding the crop.
- More time requirement during threshing the crop because of more time to feed the crops.
- Fly straw particles may drop in farmer’s eye from the rotor drum and having eye injury.
THRESHER EFFICIENCY PROBLEM

- There are many problems of efficiency leads to bad output products.
- Bending of shafts due to its more length.
- Detuning of rotor and blower speed.
- With changing of crops pulleys have to been change.
- V-belt changing operation with changing of pulleys is very difficult.
METHODOLOGY

- Study about thresher mechanism
- Searching the research paper
- Study the research paper and other introductory topics
- Study and analysis of single shaft thresher machine
- Study and analysis of double shaft thresher machine
- Design of three shaft thresher machine
- Modified auto feeder to reduce the ergonomics problem
- Design of elevating system
- Conclusion
VARIOUS PARTS OF THRSHER

- **Thresher Rotor**
 It is available in two types. This rotor rotates on two shaft and due to that the speed of the rotor and fan is proportionally same.
Chaffer

It is very useful for refined chaffing of grains.

Big Size Sieve

The new model is 30" wide. So there are no chances of clogging and the cleaning is done speedily.
- **Table**
 Due to its special design it can be moved to and fro and up and down even though it is attached to Thresher.

- **Rear- Side Blower**
 This facility helps to throw away residue and to avoid spoiling tractor's radiator in case of change in the direction of wind.

- **Traction Joint Hook**
 It is specially designed to adjust it up or down as per requirement.
Gearbox

It is designed in accordance with R.P.M of tractor. So the speed of the sieve can be adjusted according to the crop.
Implementation of Auto feeder Mechanism in Thresher
Calculative Measurements of Autofeeder Mechanism

- $N_1=$ SPEED OF DRIVING SHAFT, (rpm)
- $N_2=$ SPEED OF DRIVEN SHAFT, (rpm)
- $T_1=$ NO. OF TOOTH ON DRIVING GEAR
- $T_2=$ NO. OF TOOTH ON DRIVEN GEAR
- $P_1=$ INPUT SHAFT POWER, (kw)
- $P_2=$ OUTPUT AUTOFEEDER SHAFT POWER, (kw)
- $T=$ TORQUE TRANSMITTED, (n.m)
• NOW, INPUT POWER OF THRESHER FROM TRECTOR
 \[P_1 = 25 \text{ HP} = 18.65 \text{ KW} \]

COMMONLY SPEED OF INPUT SHAFT TO THRESHER
 \[N_1 = 650 \text{ RPM} \]
 \[T_1 = 18 \]
 \[T_2 = 26 \]

• USING FORMULA OF GEARS,
 \[\frac{N_2}{N_1} = \frac{T_1}{T_2} \]
 \[\frac{N_2}{650} = \frac{18}{26} \]
 \[N_2 = 450 \text{ RPM} \]

• NOW, USING FORMULA OF POWER TRANSMISSION,
 \[\text{INPUT POWER } P_1 = \frac{2\pi NT}{60} \]
 \[18.65 = \frac{2 \times 650 \times T}{60} \]
 \[T = 274.1 \text{ N.M} \]
• NOW, OUTPUT POWER AT AUTOFEEDER SHAFT

\[P_2 = \frac{2\pi NT}{60} \]
\[P_2 = \frac{*450*340.5}{60} \]
\[P_2 = 16.05 \text{ KW} \]

• EFFICIENCY:

\[\eta = \frac{\text{OUTPUT POWER}}{\text{INPUT POWER}} \]
\[\eta = P_2 / P_1 \]
\[\eta = 16.05 / 18.65 \]
\[\eta = 86.05 \% \]

SO, EFFICIENCY OF AUTOFEEDER = 86.05 %
Assembly of side shaft thresher

- Flywheel
- 14 inch pulley
- Step pulley
- (C-75) V-belt
- Side shaft
- Support bearing (6205)
- 5 inch pulley
- Support bearing (6205)
calculations

- $N_1 =$ SPEED OF DRIVING SHAFT, (rpm)
- $N_2 =$ SPEED OF ROTOR SHAFT, (rpm)
- $N_3 =$ SPEED OF SIDESHAFT, (rpm)
- $N_4 =$ SPEED OF FANSHAFT, (rpm)
- $P_1 =$ INPUT SHAFT POWER,(kw)
- $P_2 =$ OUTPUT ROTORSHAFT POWER,(kw)
- $T =$ TORQUE TRANSMITTED,(n.m)
- (10 INCH PULLEY DIAMETER) $D_1 = 254$ mm
- (14 INCH PULLEY DIAMETER) $D_2 = 355$ mm
- (5 INCH PULLEY DIAMETER) $= 127$ mm
- (11 INCH PULLEY DIAMETER) $= 279$ mm
• **Speed of rotor shaft (N2)**

\[
\frac{N2}{N1} = \frac{D1}{d2}
\]

\[
N2 = \frac{(N1 \times D1)}{D2}
\]

\[
N2 = \frac{(254 \times 540)}{355.6}
\]

\[
N2 = 385.71 \text{ rpm}
\]

• **Speed of side shaft (N3)**

\[
\frac{N3}{N2} = \frac{D2}{d3}
\]

\[
N3 = \frac{(N2 \times D2)}{D3}
\]

\[
N3 = \frac{(385.71 \times 355.6)}{127}
\]

\[
N3 = 1079.988 \text{ rpm}
\]

• **Speed of fan shaft (N4)**

Fan shaft is connected to side shaft with fabric belt by step pulley of (5-8-11) inch diameter so speed of fan shaft is dependent on which step belt is mounted.
- N4 when 5inch-11 inch step is connected with belt
 \[
 N_4/N_3 = D_3/D_4
 \]
 \[
 N_4 = (N_3 \times D_3)/D_4
 \]
 \[
 N_4 = (1079.988 \times 127)/279.4
 \]
 \[
 N_4 = 490 \text{ rpm}
 \]

- N4 when 8inch-8inch step is connected with belt
 here \(D_3 = D_4 \)
 so, \(N_3 = N_4 \)
 now, here \(N_3 = 1079.988 \text{ rpm} \)
 so, \(N_4 = 1079.988 \text{ rpm} \)

- N4 when 11inch-5inch step is connected with belt
 \[
 N_4/N_3 = D_3/D_4
 \]
 \[
 N_4 = (N_3 \times D_3)/D_4
 \]
 \[
 N_4 = (1079.988 \times 279.4)/127
 \]
 \[
 N_4 = 2375.97 \text{ rpm}
 \]
Efficiency of side shaft thresher

Generally tractor output is taken 35 hp power and 540 rpm of shaft. so we take P1= 35 hp and N1= 540 rpm.

now, 1 hp = 746 watt
so, 35 hp = 26110 watt

Input power, \(P_1 \) = \(\frac{2\pi N_1 T}{60} \)

\[26110 = \frac{(2\pi \times 540 \times T)}{60} \]

\[T = \frac{26110 \times 60}{(2\pi \times 540)} \]

Torque, \(T \) = 461.96 N.m

Output power at rotor shaft

\(P_2 = \frac{2\pi N_2 T}{60} \)

\[= \frac{(2\pi \times 385.71 \times 461.96)}{60} \]

\[P_2 = 18649.77 \text{ watt} \]
Efficiency, \(\eta = \frac{P_2}{P_1} \)

\[\eta = \frac{18649.77}{26110} \]

\(\eta = 71.42 \% \)

Single shaft thresher has 58 % efficiency which can improved to 71.42 % with sideshaft thresher.
Calculation of Implementation Blower
• The linear velocity of blower as well as wheat straw chaff.

\[V_{(\text{at inlet with eye})} = r \omega \]

\[= 20 \times 73.303 \]

\[= 1466.07 \text{ cm/sec} \]

\[V_{(\text{at blade tip})} = r \omega \]

\[= 50 \times 73.303 \]

\[= 3665.19 \text{ cm/sec} \]

• Area of blower at the inlet for air and wheat straw chaff.

Area at the eye of redeveloped blower,

\[A_{(\text{inlet})} = 2 \times \pi \times r \times L \]

\[= 2 \times 3.14 \times 20 \text{ cm} \times 10 \text{ cm} \]

\[A_{(\text{inlet})} = 1256.63 \text{ cm}^2 \]
• **Area at the exit for air and wheat straw chaff**

 Area at the exit end of redeveloped blower,
 \[A_{\text{out}} = 32 \text{ cm} \times 32 \text{ cm} \]
 \[= 1024 \text{ cm}^2 \]

• **The centrifugal force of fan blower paddle to throw the chaff**

 \[F_c = m r \omega^2 \]
 \[= 0.38 \text{kg/sec} \times 0.50 \text{ m} \times (73.303 \text{red/sec})^2 \]
 \[= 1392.77 \text{ N} \]
Calculation of Implementation

Rotor
F = Centrifugal Force
e = Specific Unbalance
\(M_{(m r)} \) = Maximum Residual Mass
SU = Specific Unbalance Required
\(M_r \) = Rotor Mass
\(R_c \) = Radius of Rotor

- **Centrifugal Force**

\[
F_c = m r \omega^2
\]

\[
= 1 \times 52 \times 3317.28 \quad \text{where… (N=550)}
\]

\[
= 172.49 \text{ kN}
\]
• Unbalance

\[U = m \cdot r \]

\[= 1 \times 52 \]

\[= 52 \text{ gmm} \]

• Specific Unbalance

\[e = \frac{m \cdot r}{M} \quad \text{where..(M= rotor mass)} \]

\[= \frac{1 \times 52}{200} \]

\[= 0.26 \text{ gcm/ kg} \]

• Maximum Residual Mass

\[M_{(m \cdot r)} = \frac{SU \cdot M_r}{R_c} \]

\[= 0.26 \times 200 / 52 \]

\[= 1 \text{ kg} \]
Design of Elevating System

1 mm = 10 mm

ALL DIMENSIONS ARE IN MM

Dc = 2.4872
N1 = Input rpm = 560
N2 = Output rpm = ?
T1 = Input gear teeth = 20
T2 = Output gear teeth = 40
D1 = Diameter of input pulley = 127 mm
D2 = Diameter of output pulley = 127 mm

Solving by gear ratio equation;

\[
\frac{N2}{N1} = \frac{T1}{T2}
\]

\[
\frac{N2}{560} = \frac{20}{40}
\]

\[
N2 = 280 \text{ rpm}
\]
Bucket

ALL DIMENSIONS ARE IN MM
Bucket Calculation

The handling capacity of a bucket elevator, \(Q \) tones/hours, is calculated using the formula:

\[
Q = 3.6 \times v \times \Psi \times \gamma \left(\frac{i_o}{a} \right)
\]

\[
= 3.6 \times 0.5 \times 0.85 \times 1.5 \left(\frac{0.3}{0.15} \right)
\]

\[= 4.59 \text{ tones/hours}\]

Where, \(i_o \) = capacity of the bucket
\(a \) = bucket spacing in meter
\(v \) = chain speed meter/second
\(\gamma \) = bulk weight of load tones/meter\(^3\)
\(\Psi \) = bucket loading efficiency
The maximum static tension of the driving member S_{max} is:

$$S_{\text{max}} = 1.15 \times 3H \ (q + k_1 \ q_0)$$

$$= 1.15 \times 3 \times 1 \ (10.19 + 1.5 \times 25.50)$$

$$= 168 \ \text{kg}$$

Where, $H =$ height of which the load is elevated in meter
$q =$ weight of the load per meter of elevator length
$q_0 =$ weight per meter of chain with bucket
$k_1,k_2,k_3 =$ factor allowing for the resistance to motion and bending of the driving member and the buckets
Required motor(tractor) power on the drive shaft

\[N_0 = \left(\frac{Qh}{367} \right) \times (1.15 \times k_2 \times k_3 \times v) \]

\[= \left(\frac{21.29}{367} \right) \times (1.15 \times 2.1 \times 2.5 \times 0.5) \]

\[= 175.12 \text{ watt} \]

Chakkar diameter (dc)

\[dc = Ws - \{ lb + l \} \times 2 \]

\[= 440 - \{ 88.9 + 10 \} \times 2 \]

\[= 242.2 \text{ mm} \]

Where, lb= Length of bucket

Ws= Width of system

l= Distance b/t bucket & system body
Center length of the chakkar (lc)

\[lc = (2360 - 220 \times 2) \]

\[= 1920 \text{ mm} \]

Total chain length

\[= lc \times 2 + 2\pi r \]

\[= 1920 \times 2 + (2\pi \times 121) \]

\[= 1920 \times 2 + (6.28 \times 121) \]

\[= 3840 + 760.26 \]

\[= 4600.26 \text{ mm} \]
ADVANTAGES

• This machine is use to make threshing process easy.
• Less human effort use for operating threshing machine.
• Clean seed are achieved by use of threshing machine.
• Less time required for threshing operation.
• Less human worker use in threshing process by use of threshing machine.
CONCLUSION

• In this project we are using three shaft thresher machines it can improve the efficiency of the overall machine and reduce the shaft bending problem and improve the quality of the crops.

• Also using the elevating system in the thresher machine it can reduce the man power and crops are direct feed to the trolley and other transportation vehicles.

• Auto feeder mechanism can help to farmers for feeding the crop easily so some arm injury during feeding the crop can be reduced and auto feeder power requirement and friction loses is also very small so it is a very important improvement in multi crop thresher history. Auto feeder mechanism also helps to reduce working thresher time.
1. “Development of grain threshers based on ergonomic design criteria”

Objective: Reduce the ergonomics Problem

Design criteria: Chute

Main topics observed: In thresher machine proper length and height of chute should be selected so reduce the human injuries problem

Conclusion: change chute height, length and chute angle etc.

Objective: The machine is simple, less bulky and effective with its self-cleaning ability.

Design criteria: design of all thresher parts.

Main topics observed: design and calculation of thresher parts like shaft, pulley, drum, hopper, chute, bearing and any other parts are design discuss in detail and improve the efficiency.

Conclusion: Grains loss and mechanical visible damage have been very minimal. Performance test has revealed that the efficiency of the machine is 99.2%.
3. “REDESIGNING AND DEVELOPMENT OF INDIGENOUS BEATER WHEAT THRESHER“

Objective: The major problems on conventional threshers have been identified as bulky weight, poor machine performance, human accidents and a high fuel consumption rate.

Design criteria: Modified designs and fabrication drawings of various components of thresher machine.

Main topics observed: Total weight of redesigned wheat thresher was reduced from 1600 kg to 1300 kg by improving beaters in thresher drum and the grain damage in redesigned thresher reduced four times. The mean threshing efficiency is increased from 98% to 99% and redesigning and redeveloping the direction of fan blower exhaust, the mean grain cleaning efficiency improved from 97.44 to 98.18%.

Conclusion: Redesign the various parts of thresher machine like as flywheel, beater drum, feeding conveyer, direction of fan blower exhaust.
4. “Design, fabrication and testing of a millet thresher “

Objective: the major problem of this machine is the poor machining performance and moisture contain affected the thresher speed.

Design criteria: redesign the all parts of thresher machine.

Main topics observed: change the design of thresher parts like hopper, threshing chamber, cleaning chamber, separating chamber, blower housing, threshring drum and screen.

Conclusion: The machine was designed to be powered by a 5 hp electric motor and improve the highest threshing and cleaning efficiencies of 63.2 and 62.7% and the successful development of this machine is expected to reduce drudgery associated with the traditional method of threshing millet and therefore increase productivity of farmers.

Objective: reduce the human health problem.

Main topic observed: Four different protective masks were given and tested on various Parameters.

Conclusion: These masks were used to protect the inhalation of organic dust as well as exposure of various body parts i.e. head, face, ears and neck.

Objective : reduce the cone problem.
Design criteria : design of threshing cone.
Main topics observed : change the cone angel, cone length etc. and suitable cone material are selected so efficiency of threshing machine are more.
Conclusion : change the cone angle, cone length and cone material.
7. “Effect of type of drum, drum speed and feed rate on sunflower threshing“

Objective: the major problem of thresher machine are the output capacity, threshering efficiency, grain damage, reduce the grain losses, power requirement and specific energy consumption against the drum type and drum speed.

Design criteria: change the power output.

Main topics observed: change power requirement and specific energy consumption against different drum types, drum speeds and feed rates and improve the efficiency.

Conclusion: The threshing efficiency was found to be in the range of 99.77–100% when the threshing material change like drums, drum speeds and feed rates.
8. “Performance evaluation of four wheel tractor driven high capacity combined paddy thresher “

Objective: this thresher machine is produce the high moisture in environment and straw caused to higher percentage of damaged grain losses and lower output capacity.

Design criteria: design the chute by the paddle fan

Main topics observed: The four wheel tractor driven high capacity combined paddy thresher worked satisfactorily with higher moisture content of crop and showed relatively higher average performances without vibration, clogging or any other deficiencies.

Conclusion: this thresher worked satisfactorily with higher moisture content of crop and higher average performance and without vibration.

Objective: reduce the low quality of paddy rice and grain loss.

Design criteria: change the thresher mechanism.

Conclusion: the speed and the feeding speed increase than improve the drudgery and threshing challenges with small scale farmers.
REFERENCES

3. S.A. Ahmad¹, M. Iqbal², M. Ahmad³, A. Tanvir⁴ & J.K. Sial⁵ . “REDESIGNING AND DEVELOPMENT OF INDIGENOUS BEATER WHEAT THRESHER “- Department of Farm Machinery & Power,University of Agriculture, Faisalabad

9. Ouézou Yaovi Azouma1, 2, Makennibe Porosi1, 2 and Koji Yamaguchi3 “Design of throw-in type rice thresher for small scale farmers”-Indian Journal of Science and Technology Vol.2 No. 9 (Sep 2009)
Model Preparation
APPENDIX

Canvas Ideation

Topic: About Threshing Machine

Team ID: YY17
Group No: 30

People

- Farmer
- Agriculture Industries
- Student patrol
- Agricultural Engineering
- Agriculture Marketing
- Agro. Fair
- Farm house worker
- Villagers
- Agriculture Technology

Activities

- Rice Threshing
- Corn Threshing
- Wheat Threshing
- Castor Threshing
- Mustard Threshing
- Millet Threshing
- Groundnut Threshing

Situation / Context / Location

- Farm
- Industries
- Agro. Fair
- Village

Problem Solution

- Auto Feeder System
- Elevating System
- Ergonomics Problem
- Human Safety
- Easy Cleaning
- Heavy Gear Box
- Automatic Pulley, Belt Jetting
- Less Operating Time
- Less Human Work
- Sharp Blade for Cutting
- Easy Separate Atoms

This image represents an ideation process focused on the topic of threshing machines, categorized into people, activities, situational context, and problem solutions. Each category includes various elements that are integral to the ideation process.
THANK YOU...